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The Ltppman-Schwmger equation for the [-matnx m three-dImensIona space IS solved 
directly wlthout angular momentum decomposltlon As an alternatlve to avold the propagator 
smgulanty we also study the time-dependent Schrodmger equatton. It IS solved m Integral 
form and m momentum space by using complex momenta This damps the energy dependent 
time factors which for real momenta would be ddlicult to handle numerically Examples 
demonstrate feaslbdlty and usefulness le 1988 Academic Press, Inc 

I. INTRODUCTION 

Angular momentum conservation for scattering on a scalar potential is a well- 
accepted simplification and reduces the scattering problem to a set of uncoupled 
one-dimensional equations. For higher energies, however, many partial waves may 
contribute to a scattering amplitude. Whereas the higher partial-wave amplitudes 
show a strong oscillatory angular behaviour, the full scattering amplitude often 
behaves rather smoothly and the decomposition into “violent pieces” should be 
avoided. We therefore study the direct solution of potential scattering in three- 
dimensional space without angular momentum decomposition. Since we work in 
momentum space this involves the direct solution of the Lippmann-Schwinger 
equation (LS) for the T-matrix depending on vector variables. This could have 
useful applications. In the two-nucleon problem, for instance, the forces are spin- 
dependent and the angular momentum decomposition is quite tedious. This can be 
avoided as we shall demonstrate in a forthcoming paper. Here we shall restrict our- 
selves to spinless particles. The way we solve the three-dimensional LS equation 
together with a numerical example is shown m Section II. 

Solving a LS equation for potential scattering one faces the Cauchy singularity 
(E+ i& - E))’ which can be treated by standard techniques. For three particles, 
however, the free propagator singularity combined with a partial-wave decom- 
position yields quite unpleasant “moving” logarithmic singularities. Obviously, one 
avoids singularities completely in a time-dependent formulation. As our first step 
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we therefore study the solution of time-dependent potential scattering in three- 
dimensional space without angular momentum decomposition. There are solutions 
of the time-dependent Schrodinger equation in one space-dimension and we are 
aware of three-body systems treated either in a collinear approximation or m an 
Euler angle decomposition. The strong oscillations occuring in configuration space 
[ 1, 21, however, led us quickly to regard a momentum space representation instead. 
We present two approaches. In the first one the evolution of the scattering state is 
followed from large negative times towards t = 0 and the time evolution of auxiliary 
states from large positive times backwards to t = 0. These auxiliary states develop 
out of a suitable chosen set of initial wavepackets. They have to be general enough 
such that by a linear combination one can represent the physical state at t = 0. 
Equating the two states at r =0 one can determine the on-shell scattering 
amplitude. 

In the second approach we tame time and energy dependent oscillations in the 
state by choosing complex momenta. The dependence of the state on real momenta 
can be determined in a second step by quadrature. Both approaches are described 
in Section III. We illustrate the first approach with a numerical example in one 
space-dimension. The second approach, which we favour, is examplified by a 
numerical example in three-dimensional space in Section IV. There we also describe 
how we handle the time dependence by a linear or cubic interpolation. A more 
sophisticated interpolation by cubic B-splines IS described in the Appendix. We 
summarize in Section V. 

II. STATIONARY POTENTIAL SCATTERING 

The LS equation for the half-shell T-matrix reads 

T(% 90) = Qqv 90) + j- d3q’wl, 9’) E + ;c _ E T(q’, qo) 40 4’ 
d =g 

> 

(11.1) 

E,, = 2m, E,, 

Let us assume a scalar potential V(q, q’) which depends on q = IqI, q’= Iq’l, and 
y = 4 .d’. As a consequence T depends on q, q,, and x = 4. do. In explicit notation 
and dropping the q,-dependence in T we get 

T(q, x) = Uq, qo, xl + lo-= d&i2 j;,’ dx’ Iin 4’ 

x Uq,q’, Y), 
40 

T(q’, x’). 
q’ 

(11.2) 
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Obviously, we can put y = xx’ + Jg dm cos cp’ and recognize that the 
VI-dependence occurs only in V. We introduce 

u(q, q’, x, x’) = [;’ dcp’ V( q, q’, xx’ + JiT JI-l;” cos $9’) (11.3) 

and end up with a two-dimenstonal Integral equation 

T(q,x)=&(q,qo,x, I)+[; dq'qf2 

s 

+I 
X dx'4q,q',-v')E +;c-E T(q', x‘ 1. (11.4) 

-1 YO 4’ 

This equation can be easily solved even on a modest computer. It may be advisable 
to introduce the real K-matrix through 

aq, -x, K3) =& u(q, qo, x, xo) + 
i‘ 

iL dq’qf2 
0 

X 
s 

+I 
K(q’, x’, x0). (11.5) 

-1 
d.u’dq, q’, x, x’) E 

40 
L E 

9’ 

Then the on-shell scattering amplitude can be gained through the one-dimensional 
integral equation in the angular space 

s 
+I 

- 2m7c*qo i alo, x, -K’) Qqo, x’). (11.6) 
-1 

Instead of (11.5) a K-matrix K(q, x) in analogy to Eq. (11.4) could have been 
introduced, which in the step (11.6), however, would have required interpolation. 

As an example, typical for nuclear physics, we have chosen the local Mallhet- 
Tjon potential, MT III [3] 

V(r)=(V,e (11.7) 

with V, = 1438.720 MeV fm, V, = 626.885 MeV fm, pLR = 3.110 fin- ‘, and pA = 
1.550 fm-‘. In momentum space this yields 

4% 4, v) = J.- ( 
VR V, 

279 q2+q~*-2qqt1’+p;-q*+q’*-2qq’y+p; > 
(11.8a) 
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FIG 1 The real part of T(q,, x) * 10’ for I$, = 697 MeV agamst x 
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-I . . . . 
FIG 2 The real part of T(q,, x) * 10’ In a partial wave representation for E, = 697 MeV agamst x 

The three curves refer to I,,, = 5, 10, and 20, respectwely 
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or 

lJ( q, q’, x, x’) = i 
CJ 

VR 
(42 + q’2 - 2qq’xx’ + #up - 4q2q’2( 1 - x2)( 1 - x12) 

V/i - 
J(q* + q’2 - 2qq’xx’ + p’,)’ - 4q2q’2( 1 -x2)( 1 - X’2) > 

(11.8b) 

Equation (11.5) is easily solved using typically 20( 14) quadrature points in q(x). 
(We used the Pad& technique to sum up the Neumann series.) The on-shell 
equation (11.6) then yields the scattering amplitude. 

We show the real part of T as a function of x in Fig. 1. This is to be compared 
with Fig. 2, where the partial wave amplitudes summed up to I,,, = 5, 10, 20 are 
exhibited. They are defined by 

T(qo, -x) = & z T,(qo) f’,(x). 
I-0 

(11.9) 

The complicated interference is obvious which has to build up the curve without 
wiggles of Fig. 1. 

A generalization to particles with spin, for example the two-nucleon system, can 
easily be worked out. It leads to a finite small number of coupled equations in the 
variables q and x. Its application to the two-nucleon system will be presented m a 
forthcoming paper. 

III. TIME-DEPENDENT POTENTIAL SCATTERING 

The time-dependent Schriidinger equation can be cast into the form of an 
integral equation 

$(r)=$o(t)+fj,x df’e-‘“O”-r’) P-$(f). 

Here $(t) coincides at t = - cc with the free wavepacket 

1$0(t)) =jd3q IQ) e-‘%(s) 

We find the behaviour for t + + cc by rewriting (III.1 ) into 

l)(t) = $o(r) +f j;: dr’e-‘HO”-f” v+(f) 

(111.1) 

(111.2) 

1 = -- 
f i , 

dfe - lffd~ - t’) V,)(f). (111.3) 
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The second term on the right-hand side of (111.3) is evaluated with the help of the 
stationary scattering solutions $, ( + ) of the time-independent Schrijdinger equation: 

(111.4) 

One gets 

X 
s 

m dfe”kb “‘fo(qf) (111.5) 
-x 

1 =- 
I s d3q Iq ) e -“q’ i 

d3q’Z-(q, q’) 

x 271 wq - K() fo(q’), 

We encounter again the half-shell T-matrix 

(111.6) 

T(q,q’)= (q IVI II/‘;“> q (111.7) 

of Section II. 
Let us regard the momentum space representation of (III.1 ) and (111.3). We 

define 

and get 

<q W(t)> =f(q, t) 

(n Ill/,(t)) =fo(q, t)=e-‘%dq) 

(111.8) 

(111.9) 

f(q, t)=e-‘Eqy,(q)+fj, dt’e-‘Eq”-r’) 
x 

x s d3q’Vq, q’) f(q’v t’) (111.10) 

f(q, t) = e-IEq’fo(q) - 2xie-‘Eq’ 

x s d3qTqs q’) W, - &)h(q’) 
1 * -- 

s i , 
dt’e-‘E~c’-“J I 

d3q’V(q, q’) f(q’, t’). (111.11) 
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Clearly, m a numerical treatment, the strong oscillations ePrEq’ connected with the 
flux and energy conserving asymptotic parts in (111.10) and (III.1 1) at large It1 
should be avoided. In (111.10) we could subtract the oscillating incoming part 

J-(4* t) = fo(Q1 f) + R,(q, t) (111.12) 

and consider the resulting integral equation for the scattered part R,(q, f) 

R,(q, t) = f J.1 
r 

dt’ep’EJ-r ) 1 &q’V(q, q’) e-‘Eq’yo(q’) _ 

Whereas for t -+ -co, R,(q, t) tends towards zero, for t -+ + ;x, it oscillates 
according to the second term on the right-hand side of (III.1 1). An obvious remedy 
is to turn to the interaction representation and strip off the free time behaviour 

Then we arrive at 

R,(q, t) = e+‘R,(q, t). (111.14) 

R,(q, t) = f Jr, df’Pq” J d3q’V(q, q’) ec’Eq’~o(q’) 

+ f J” dt’e’Eq” 1 d3q’V(q, q’) e-‘Eqr’l?,(q’, t’) (111.15) 
32 

Is &q, t) now free of oscillations at large ltl-values? We enlighten that question 
with the aid of the formal solution (111.4). In momentum representation we get 

As, t) = { d3q’<q I$:: ‘> ep’Eq’fO(q’) 

=e - ‘Eqrfo(q) 

+ d3q’ f 
T(q, 9’) 

E,, +ro~E~~ -‘Eq1fo(9’) 

or 

h,(q, t) = f d3q’e’(Eu- Eq )’ E T~~cq~‘E "fdq'). 
4' 4 

(111.16) 

(111.17) 

Clearly for It1 + cc the integral excluding the neighbourhood of the singularity 
vanishes due to the Riemann-Lebesgue lemma. The integral over a sufftciently 
small neighbourhood of E, can be easily evaluated by taking T(q, q’)fo(q’) out of 
the integral. One finds that it vanishes for t -+ -co and approaches the expression 
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(111.6) for t + + co, with the exponential factor ePrEqr stripped off. This insight, 
however, is too weak, since we need to know how the asymptotic limits are 
approached. We regard a Gaussian momentum distribution in the initial state 

(111.18) 

For t >O (t ~0) one turns the path of integration in (111.17) into the angular 
directions - 7r/4 ( + 7c/4) (see Fig. 3). Thereby for t > 0 one picks up a residue at 
Jq’l = [ql- IE which provides the leading asymptotic part: 

&I, t) = -27wt) J d3q’wl, 4’) w, - E,.)f,(q’) 

( > 
3 ‘2 

XL e 

J;; 

-o2/2f2r@ ~ 2qo I’+ 2,qo I’ + +,;, (111.19) 

where we put q’ = I( 1 f i) for t 6 0. 
To keep our analysis as simple as possible we have assumed that the r-matrix has 

no poles or cuts in the dashed regions of Fig. 3. In the more general case when there 
are poles in the respective region one has to add some residues. These additional 
terms, however, decrease exponentially with ItI. 

In the second term in (111.19) we take an averaged value of the t-matrix and the 
propagator, c(q), out of the integral and end up with 

R(q, t) = -2niRt) J- d3q’wl, q’) w, - E,.)f,(q’) 

+ e’Qc(q) Q(t) 

Im(q’) 

($1 

‘# q ;l'(l-8, 

(111.20) 

FIG 3 Contour defomatlons for (III 17) as explained In the text 
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with 

@(t) = J d3q’e-+‘fo(q’) 

= 0 J;; (1 ::(t,mo’)) ‘Eqo’exp 
- (q$202m2) t2 

1 + l(t/ma’) ’ 
(111.21) 

Q(t) IS Just the free wave packet m configuration space at the place x = 0 with a 
spreading 

It can be seen from (111.19) that c(q) will depend only weakly on t. Neglecting that 
dependence we see that for 151 < 1, &q, t) approaches its asymptotic value in t 
rather quickly: @(t) -e- (~~202m”r2. Let us take the example to be discussed in chap- 
ter IV: 

qO = 3.5 fin-‘, a=5fm, m = 2.379 fm ~ ‘. 

CJ is the width of the initial wavepacket in conliguratton space. Assuming a potential 
range of z 3 fm (see (11.7)) we therefore have no considerable overlap of the 
wavepacket and the interaction region at time ItI z 20 fm. This corresponds to 
151 = 0.34 and thus Q(t) decreases like a Gaussian in (il. The numerical 
mvestigations m Section IV confirm these results completely. It is not necessary to 
go to the far asymptotic region with \<I B 1, where the second term in (111.20) 
shows the well-known decrease proportional to I t( -3i2. In the example above we see 
that the exponential factors m (111.21) tend towards e --(li26’2 z 10-6’ for large ItI, 

Summarizing we can say that the use of an initial wavepacket in Gaussian form 
gives rise to the very strong decreases of the function i?, to its asymptotic value. 

Thus a numerical calculation of A, by an appropriately modified integral 
equation (111.13) appears possible. In reality the factor erEqr in (111.20) causes strong 
oscillations even in the case of intermediate times (t z 10 fm in the example above). 
Moreover, the appropriate integral equation for A, IS much more difficult to solve 
than the one for the Schriidinger amplitude R, (see Section IV). If we go back to R, 
we can push this oscillatmg factor to the flux conserving asymptotic part, which is 
subtracted out anyhow for t -C 0. For t > 0, however, this part is not known and 
cannot be subtracted out. We investigated two ways to solve that difficulty, which 
we now present in turn. 

(a) Forward and Backward Propagation in Time 

Starting at large negative times with the initial wavepacket we follow the 
evolution of the wavefunction till I = 0. Then we start at large positive times with a 
suitable set of wavepackets directed towards the potential area and coming from all 
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directions, and follow their evolution till t =O. The latter set of states has to be 
complete enough to build $(O) by a linear combmation. Equating that linear 
combmation to It/(O) gamed through negative times determines the on-shell 
scattering amplitude. 

For t<O we use (111.13). According to the consideration above we know that 
R,(q, t) approaches zero for t --f - co without strong oscillations. For t > 0 we use 
(III.1 1). Contrary to the case t < 0 we do not know the driving term. But we can 
parametrise it with the aid of a suitable set of known functions H,(q): 

“b(Q) - 2m j- d3dm17 4’) 4& - JYf)f,(q’) 

=I H,(q) c,. 
1 

Then defining 

we get 

f(q, t) = eprEq’ C H,(q) c, + RJq, t) 
1 

R,(q, 1)’ +” &‘e-‘%f’-“1 
, 

x s d3q’V(q, q’) ePrEq” 1 H,(q’) c, 
z 

(111.23) 

1 x -- 
f dt’e ~ rEd’ - “’ 

I 
d3q’ V(q, q’) R,(q’, 1’). (III.24 

1 , 

Clearly R,(q, I) can be written as 

R/(qv 1) = c R,(qv t) c,, (III.25 

where R&q, t) obeys (111.24) with c, = a,,. Again we know that RJq, t) approaches 
zero at t + + co without strong oscillations. We determine the coefficients c, 
knowledge acquired at t = 0 from both sides: 

1 H,(q) c, + RJqv 0) =h(q) + R,(q, 0). 
r 

(111.26) 

Choosing appropriate q-values yields a sufficient number of equations to determine 
the coefficients c, and therefore the on-shell T-matrix according to (111.23). 

We tested that procedure in one space dimension using a Gauss potential 
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Vq,q’)= -1exp{-P’(q-q’)‘j d an an initial wavepacket f 0 (q) in Gaussian form 
as in (III. 18). As the test functions H, we choose 

f 

4x-‘fcl(4) (aal) 
H,(q) = h(4) (ci=O) 

(-s)-“-‘fo(-4) (a< -1) 
(111.27) 

(We put c,, = 1 in the trivial case M = 0.) 
We calculated R,(q, 0) according to (111.13) and R,(q, 0) according to (111.24) 

and (111.25). The time integration was handled by cubic spline interpolation as 
described in the Appendix. With the help of the coefficients c, (obtained from 
(111.26)) one easily calculated the on-shell T-matrix for several momenta q con- 
tained m the initial wavepacket (see 111.23). In order to achieve an accuracy of two 
digits in the on-shell t-matrix elements it proved sufficient to use Ial < 3 m (111.27). 

Since (111.24) has to be solved for each value of a, a parallel vector processing 
would be ideal This would be even more relevant in the three-dimensional case, 
where one has to approximatef(q, t -B “c’) by many more functions H,(q) in three 
dimensions. A successful use of that method depends therefore on whether one can 
find an optimal set of test functions H,(q). Instead of diving into that problem we 
studied another method relying on the time-integration from t = - CC to t = + CD as 
described in the next section. 

(b) Contour Deformation 

The asymptotic estimate (111.20) of the formal solution (111.17) suggests another 
possibility to get rid of the oscillations. We go back to the Schrodinger amplitude 
R,(q, t) = ePIEq’R,(q, t) and use complex momenta q -+ I( 1 - i). Then R,(q, t) + 
eP”““‘)R (I( 1 - I), t) is well defined and not oscillatmg, provided that the T-matrix 
allows such a change to complex momenta. (Note that the &function in the first 
term of (111.20) prevents the appearance of an exponentially increasing factor 
e-“” m’ in the case of negative t-values). 

Unfortunately, when shifting the momenta into the complex plane as described 
above one may hit smgularities of the potential. This is the case in nuclear physics 
where boson exchanges characterize the analytical structure of V(q, q’). A typical 
term is 

vq, q’ I- 
1 

p2 + (9 -q’)? 

1 
= p2 + qz - 2qq’ cos 8 + q’2 

(111.28) 

which in the worst case (cos 8 = 1) has a pole at q = q’ + ip. Therefore as a first step 
we choose both q and q’ in (111.13) of the form I( 1 - ia) with 0 <a Q 1 and get 
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R,(I( 1 -la), t) = R,(I( 1 - ia), t) 

x(1-ra)Id31’V(I(1-ia),1’(1-ia)) 

x R,(I’( 1 - ia), t’). (111.29) 

The kernel m (111.29) is well behaved for all a’s and guarantees the existence of 
R,(I( 1 - ia), t), provided the driving term R, exists. 

Once R,(l(l - ra), t) is determined we use (111.13) again to find the Schrodinger 
amplitude for real momenta 

R,(q,r)=R,(q,t)+A 1’ dt’ep’Eq”p”)(l-ia) 

x 
s 

d31’V(q, I( 1 - ia)) R,(I’( 1 - ia), t’). (111.30) 

This equation is only correct for 0 G a G p/q as is obvious from (111.28). Otherwise a 
residue at the pole of the potential would have to be taken into account. Though 
this is possible it would be against the spirit of our approach: We do not want to 
replace propagator singularities (occurring in a time-independent approach) by 
potential singularities. If the maximum value of q (real) is greater than p we 
therefore content ourselves with a less than 1 (see (111.33) below.) 

Returning now to (111.29) we recognize that m the case a < 1 the kernel still 
shows an oscillating behaviour but it is strongly damped by the factor .c~‘~~(‘~~‘)‘“” 
m the case of large I-values. That factor also suppresses the contributions of 
R,(I’( 1 - ia), l’) for t’ << t. Thus numerical errors m R, do not pile up. 

The driving term R, reads 

R,(I(l-ra),~)=fj; d~re~~~2(~~~2)((~--rJ/2ml,-a~2((f~r’,/m, 

cx 

F 

qo + A 
X dq’qf2V(I( 1 - la), q’&,) ~‘~q”f~(q’). (111.31) 

Here we used an initial wavepacket in the form 

fo(q) = d2(4 - 4cJfo(q) 

h(4)= 

I 

(-j=)32ev{ -Tjkh)2] if qo-d<qdqo+d (11132) 

0 else. 
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The delta functional in the direction of q0 was introduced in order to make the 
calculation as simple as possible. The differences between this wavepacket and the 
pure Gaussian one in (111.18) only lead to small modifications of the analytical 
discussion in (111.19~(111.21). 

As above we have supposed that a <p/q’ for all q’ in order to avoid a singularity 
from the potential. Thus a is restricted by the maximal q-value in the initial 
wavepacket 

O<a<z. 
qo +A 

(III.33 ) 

We use (111.30) to determine the amplitud for real q-values. Physically interesting 
and present at large positive times t are only momenta from the initial momentum 
distribution. For those q-values the choice (111.33) also guarantees the existence of 
(111.30). 

The complex path of integration C (q’ = I’( 1 - ia)) m (111.29) and (111.30) is 
shown m Fig. 4. These equations can be simplified. It is clear that R,(q, t) only 
depends on q2 and x = 4. Go. Therefore the azimuthal angle cp occurs only in the 
potential and we can proceed as in Section II by defining u (see (11.3)). We then get 

x J: d4d2 j;,’ dx’u(q, q’, x,x’) R,(q’, x’, t’). (111.34) 

If q is real this represents (111.30). For q along C this is the integral equation 
(111.29) to be solved, which will be described in the next section. 

To demonstrate the advantage of complex q-values we compare the Schrodinger 
amplitudes R,(q, x, t) for complex and real momenta in Figs. 5 and 6. For a fixed 
angle x the time development of the real part of R, is shown. The underlying 

‘+,-A q, q,*A 
> 

FIG 4. The complex path of mtegratlon C m equations (III 29), (III 30), (III 34) The range of mltlal 
momenta IS Indicated together with the region where potential smgularlties occur. 

581.76 l-10 
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FIG 5 The real part of R,(q, s. I) for complex momenta and fixed s between f = - 10 fm and 
I = 15 fm The x- and y-axls denote time and momentum, respectively 

FIG 6 The same as m Fig 5 for real momenta 
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physical example will be explained in Section IV. Whereas R, along C gets smaller 
for large t-values it oscillates strongly for real q-values. These strong oscillations 
make a direct solution of (111.13) for real q-values very difficult if not impossible. 

Having obtained R,(q, x, I) for real q and t + co we can extract the T-matrix 
T(q, q’) using (111.11) and (111.12): 

k,(q, t) = e+R,(q, t) 

- -21cz I-T I 
&q’?-(q, q’) 6(E, - E,.)f,(q’). (111.35) 

Inserting our special wavepacket (111.32) we finally get 

(111.36) 

IV. NUMERICAL TREATMENT OF THE TIME DEPENDENT SCHRODINGER EQUATION 

The integral equation (111.34) poses a problem m three variables: q, x, t. Since for 
general interactions we cannot expect that it can be solved by iteration (Born 
series), we have to invert a matrix whose rows and columns are numbered by the 
set of q-, X-, and t-values. In order to avoid too large matrices we split the total 
time interval mto N parts, AT= 2T,,/N, where T TO are the times beyond that the 
in- and outgoing wavepackets can be assumed to be free. Equation (111.34) is then 
solved in steps for the consecutive time Intervals AT. 

Let T be the left end of such an interval AT. Then Eq. (111.34) can obviously be 
rewritten into 

x s, Wt2 I+,’ dx’dq, q’, x, x’) R,(q’, x’, t’) (IV.1 ) 

with (see (111.31)) 

e -I(Eq-Eq)(I-Tl- 1 1 
X 

E, -E, 
211 u(q, 4’9 x9 1 )fo(q’ - 40). (IV.2) 

Equation (IV.1 ) is used for T< t 6 T+ A T. The resulting function R,(q, x, T+ AT) 
is the starting function for the following interval. At T = - To (i e., in the first 
interval) we can put R,(q, x, - To) s 0. 
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Equation (IV.l) has now to be discretized in the three variables q, x, and t. We 
start the discussion with the t-dependence. If AT is sufficiently small one can think 
of a linear interpolation in t for t E [T, T+ AT], 

with 

R,(q, I, t) = Rig, -x, Z-1 N,,(f) + R,(q, x, T+ AT) N&t) (IV.3) 

T+AT-t 
N,,(t)= AT 

(IV.4) 
t-T 

N**(f) =y. 

R,(q, x, T+ AT) is now simply calculated by putting t = T+ AT in (IV.l) and 
inserting (IV.3) into the t’-integral on the right side. The t’-integral then reduces to 
two trivial integrals: 

This leads to the integral equation 

R,(q, X, T+ AT)= Rgr)(q, x, T+AT)+f K,,(iE,, AT)Srdq’q” 

X 
I 

+’ dx’u(q, q’, x, x’) R,(q’, x’, T) ++ K,,(iE,, AT) 
-1 

x lcdq’q” ,: dx’v(q, q’, x, x’) R,(q’, x’, T+ AT). (IV.6) 

Suppose now that the double integral in q’ and x’ has been discretized (we use 
Gaussian quadrature points for that purpose), 

j-c dq’d2 s,’ dx’o(q, 4, x, x’) R,(q’, x’, 2) =; V,BR,B(f), (IV.7) 

where the indices u and /? number all discrete values of the set (q, x) and (q’, x’), 
respectively. Then equation (IV.6) reduces to a system of linear equations 

c M$R,,( T + A T) = R&f’( T + A T) + c M$‘R,,( T) (IV.8) 
B B 



TIME-DEPENDENT SCATTERING 147 

with two matrices 

Note that neither ML;) nor M,, ‘*) depends on the time interval chosen, i.e., on the 
value of T! 

So we have to calculate h4$ and M!$’ and invert M$’ only once for all intervals 
[T, T+ AT]: Once we have made a LU-decomposition of M$ we just apply the 
decomposed matrix to the right-hand side of (IV.8). 

Linear interpolation in the case of badly behaved functions R,(q, X, t) requires a 
small AT, and a lot of steps are necessary to go from - To to + To. In such a case it 
may be better to use a more accurate interpolation. 

In the following, we present an interpolation by cubic polynomials. The treat- 
ment is strongly influenced by cubic B-sphnes, which provide us with a still better 
way of interpolating the t-dependence and which are treated in the Appendix. 

Choose the following set of linearly Independent cubic polynomials in the interval 
[T, T+ AT]: 

N4,(f) = (T,,,_ t) 

N4*(+3(T+;yT-I)‘(g) 

N43(l)=3(T+;yT-~)(g)2 

N44(f)= G ( ‘> 
3 

These polynomials can be generated by a simple recipe: 

(T+AT-t)+(t-T) 3 4 

AT 1 = ,c, N4S t 1. 

In a similar manner we can generate three quadratic polynomials 

(T+AT-t)+(t-T) * 3 

AT 1 = I, Ndf) 

(IV.10) 

(IV.1 1) 

(IV.12) 

and the two linear polynomials N,, (see (IV.4)). These equations can be sum- 
marized mto 
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From this one easily verifies 

n-l N,,(r) =- AT (N,-r,,-I(f)-N,-,,,(t)). 

(IV.13) 

(IV.14) 

With the ansatz 

k=l 

(IV.15) 

the t’-integral in (IV.l) can be carried through analytically. In analogy to (IV.5) we 
define 

K,,&, T, t) := 1’ df’e -=“--I” Nnk(t’). 
T 

(IV.16) 

Partial integration then leads to 

Knk(z, T, [)=A 
z 

Nnk(t)-e-“‘-“N,,(T) 

- 
I 

’ dt~e-4-I) Jg&‘) . 
T I 

With the help of (IV.14) one obtains the recurrence relations 

(IV.17) 

K,,k(=, T, t,=' z Nnk(t)-e-~="~~'N,,k(T) 

n-l -- 
AT 

K (,,-,,.(k-,,k, T, t)+sK (n- L,.kb T, t) (IV.18) 

which starts with the trivial case (N,, E 1): 

Again, the integrals are independent from the time interval chosen. Indeed, 

= 
I 

f dfte --i,l~ f’) - Nnk(tn + AT), (IV.20) 
T 
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where the tilde indicates that both K”, and rink refer to the shifted interval [T+ AT, 
T+ 2AT]. As is obvious from (IV.13) 

&,(r + AT) = N,Jt) (IV.21) 

and consequently 

Knk(z, T+ AT, t + AT) = K,&, T, t). (IV.22) 

We are now prepared to approximate the integral equation (IV.1) in the Interval 
[T, T+ AT]: 

k$, ck(q, x) Ndk(f) = RbYq, x, t) + f k$, bk(iE,, T, t) 

x Jc dq’q” ,+: d.x’o(q, q’, x, x’) c,Jq’, x’). (IV.23) 

In order to determme the four coefficients ck(q, x) (k= 1, . . . . 4) we need four 
t-values within the Interval under consideration: we choose 

t,=T+(& (1=1,..,4). (IV.24) 

Finally, having discretized the Integrals in q’ and X’ as in (IV.7) we end up with the 
following algebraic system of linear equations 

i 
k=l 

CkoN4k(t,) - f k$, bk(iEy,, T, r,) 1 V,,skp 
B 

= RQ(r,) (IV.25) 

Because of (IV.22), the construction and the LU-decomposition of the integral 
kernel have to be performed only once for all time invervals. 

Note, however, that now the rank n of the kernel is four times larger than in the 
case of linear interpolation because R, is calculated at four times r, simultaneously. 
The time required for the LU-decomposition IS approximately proportional to n3. 
This larger consumption of time has to be weighted against the smaller number of 
iterations (compared with linear interpolation). The choice for one of both methods 
naturally depends on the smoothness of the function R, and the size of the whole 
interval [ - TO, To] (i.e., the necessary number of time steps) and on the value of n. 
Examples will be given below. 

Let us now present an application. We choose again the Malfhet-Tjon potential 
considered in Section II. The initial momentum distribution is taken in the form 
(111.32). With q. = 3.5 fm-’ which corresponds to a central energy E, = 508 MeV 
(we use a reduced mass for two nucleons of m = 2.379 fm-‘), A = 1.2 fin- ‘, and the 
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spread in configuration space is chosen to be IT = 5 fm. Therefore all energies 
between E,,,,” = 219.4 MeV and E,,, = 916.1 MeV occur m our wavepacket. (These 
high energies require, of course, a relativistic framework. Since we work in momen- 
tum space that change could be incorporated. Our aim, however, is to demonstrate 
the time-dependent and three-dimensional treatment without partial wave decom- 
position and we do not want to introduce unnecessary complications.) 

A starting time of T, = -20 fm proved to be sufficient in order to get a stable 
result for the T-matrix extracted at t = + 20 fm. We solved (IV. 1) for consecutive 
time intervals AT = 0.05 fm by linear mterpolation (see Eqs. (IV.3 t( IV.9)). Along 
the path C of Fig. 4 (o! = 0.3) we used 39 Gaussian quadrature points m q and 13 
quadrature points in x. In this case the solution of (IV.1 ) takes about 230 s on a 
Cyber 205. The remaining steps to arrive at the T-matrix for energies contained in 
the initial wavepacket are negligible. The time development of R,(q, x, t) for 
complex q-values in comparison to real ones is shown in Figs. 5 and 6. In Table I 
we present the T-matrix for three energies contained m our wavepacket and several 
angles in comparison with results obtained with the time-independent calculation of 
Section II. 

It is interesting to regard also how the angular distribution in R,(q, x, t) builds 
up in time. This is shown m Figs. 7 and 8 for a fixed real and complex momentum 
value q, respectively. Whereas for a real q-value the amplitude remains oscillatmg 
for large times it is damped for a complex momentum value. 

In Table II we present the same example as above calculated m three different 
mterpolation schemes: linear interpolation, interpolation by cubic polynomials, and 
interpolation by cubic splines with 7 knots (i.e., m = 7 in the appendix). The time 
Intervals AT are chosen m such a way that all methods give nearly the same 

TABLE I 

The On-Shell T-Matrix T(q, x) = 1 T(q, x)1 exp[y(q, x)] as 
Obtamed from Time-Dependent (I) and Time-Independent (II) Calculations 

I II 

E 
4 4 
MeV 1 fm- 

x I T(q. .r)I 444. xl 

-I 
300 2.69 0 

+I 

-1 
500 3 47 0 

+I 

-I 
700 411 0 

+I 

1.43 * IO-’ 001 143 * lo-’ 
277 * IO-’ 041 276* lo-’ 

32 I * 10-3 -291 320 * LO-’ 

121 * IO-3 -052 1.22 * lo-’ 
208 t lo-’ 007 208 * lo-) 

318 *IO-’ -2 95 318 * lo-’ 

104* IO-’ -083 I05 * 1o-3 
1.73 * IO-’ -023 173 * 10-j 

315 * LO-3 -297 316 * lo-’ 

001 
041 

-291 

-0.52 
007 

- 2.95 

-0 82 
-0.23 
-297 
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FIG 7 The real part of R,(q, .Y, I) agamst x = 4 &, for a fixed real momentum between I = - 10 fm 
and [ = 10 fm The x- and r’-axls denote time and 4 QO, respectively 

FIG 8 The same as m Fig 7 for a fixed complex momentum 
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TABLE 11 

Comparison of Three Different Tlmdnterpolatlon Schemes 

Lmear Interpolation by 
Interpolation cubic polynomials 

Interpolation by 
cubic splmes (7 knots) 

A Tifrn 0 I25 0.75 3 
A r’/fm 0 125 025 05 
TI,.‘s 1 59 292 
Ttods 70 120 320 

accuracy m the final result (at least in the neighbourhood of qo). Note the great 
differences in the distances dr’ between adjacent interpolation points! (dr’= 
t, - r,- , in (IV.23) or (A.16); in the case of linear interpolation we naturally have 
Ar’ = AT.) We give the CPU times used for the LU-decomposition and for the 
whole calculation. For simplicity we just worked with 28 q’-points and 9x’-points; 
in this case the results for the T-matrix were accurate up to two significant digits. 

The numbers Ttotal in Table II demonstrate that linear interpolation is the 
qurckest way of solving that specific problem. This is even more the case if a higher 
number of quadrature points is used (as m Table I). 

V. SUMMARY 

We studied potential scattering without angular momentum decomposition in 
time-independent and time-dependent treatment. For higher energies the scattering 
amplitude may show a strong forward peak like m Fig. 1. This pronounced angular 
structure can easily be integrated in a Lippmann-Schwinger equation, whereas its 
presentation by partial waves is tedious as seen in Fig. 2. A direct use of the 
scattering angle as an integration variable m the integral equation should be even 
more profitable if spins are involved, like in a two-nucleon system, where already 
the partial-wave representation of the two-nucleon force in momentum space is 
quite involved [4]. An application for two nucleons interacting by OBE-potentials 
is underway. 

The free propagator singularity in the Lippman-Schwinger equation can be 
avoided in a time-dependent treatment. The momentum space representation of the 
time-dependent wave function +(t) during the interaction time is smoother than the 
configuratron space representation. For large times ItI when the particle 1s outside 
the range of the potentialf(q, t)= (q I+(t)) oscillates like e-‘Q which IS hard to 
control numerically. We proposed two ways to overcome that difficulty. For 
t + - cc that oscillating factor occurs m the known initial momentum distribution 
&(q, t) and for t -+ -cc in the unknown scattered part determined by the on-shell 
scattering amplitude. One parametrises the q-dependence of the scattered part by a 
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linear combination of test functions. Then the time evolution of the wave function 
can be followed form both sides, t --r -co and t + + cc, till f = 0. Requiring the 
equality of the two solutions gained from both sides determines the on-shell 
scattering amplitude. Clearly not the time evolution of f(q, t) is handled 
numerically but off(q, t) minus its oscillating asymptotic part. 

In a second approach we tame the energy- and time-dependent oscillating factor 
by a contour deformation to complex momenta, see (111.29) and Fig. 4. Now we 
integrate from t -+ -cc, to r+ ‘XI and regard the amplitude R,(q, 1) = 
f(q, t) -fO(q, t). The real part of R,(q, t) is shown m Fig. 5 between t = - 10 fm and 
t = + 15 fm for complex momenta. One recogmzes the strong damping for large 
times, which IS in striking contrast to the strong oscillations of R,(q, I) for real 
momenta and large times, shown in Fig. 6 Once R, for real momenta is determined 
by pure quadrature from R, dependmg on complex momenta the on-shell scattering 
amplitude can be easily extracted at large r-values It is also interesting to see in 
Figs. 7 and 8, how the angular structure of R,(q, t) builds up in time with respect to 
the beam direction. 

In the numerical treatment of the time evolution we split the total time interval 
into submtervals, in which the time dependence of R, is interpolated by 
polynomials. Then the time integration can be done analytically. It was very impor- 
tant to detect that by a suitable set of polynomials (in the most sophisticated case 
of this work cubic B-sphnes) the evolution kernel is the same for all intervals. 
Therefore, the additional time variable r m a time-dependent treatment does not 
blow up the dimension of the problem unduly. 

Both approaches, time-independent and time-dependent, work without angular 
momentum decomposition. They may be a valuable alternative to standard 
techniques. 

APPENDIX 

We want to give a short introduction on how the B-splines can be used to 
calculate the r/-integral in (IV.1 ). For the underlying theory of the spline functions 
we refer to [S]. 

Consider the general problem of interpolating a function f(r) at the points r, 
(i= 1, . . . . m) in the interval [a, b] with 

a<r,<r,< .<r,,,<b (A.1) 

by means of a spline S(r) of order n (I e., degree n - 1 with n z 1): 

W= $ cJ,,,(r) (adrdb), 
,=I 

W,) =f(f,) t/=1,. ,m) 
(A.21 
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The basis functions N,,, may be defined with the help of divided differences in the 
following way. Let us first define the truncated power function 

M,(x,t) := (x - ty- w (us ) Tj0  Tr 197TD 3  Tr582 Tr 14.1334 0  TD2 3 9a7t w  ( u s  3 6 8 f 1  r 5 8 2  T r  T r  1 8 . w  ( t h e  )  T j  0   T 4 8 7 7 6   T w  ( t h e  )  T j 3 9 1 4 . 1 3 3 4  0   T D 2  3  9 a 7 t  )  T j  0   T 0 8 , 1 6 1  0 . 0 4 1   T d  0   T D f 1  4 2 1 4   T c  0 . 0 6 5 9   T w 6 9 t  t h e  
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Dtfferentiatlon of N,,(t) yields 

lir,,(t) :=&N,,(t) = n;m[x,- n+ ,,..., x,;t]-tin[X,-. ,..., x,-,;tl 

= -(n-l)(M,~,[x,~.+ I,..., x,;tl 

-M,l-,[x-. ,..., x,-,;tl. 

This follows directly from the definition (A.4) and from 

According to the definition (A.6) one therefore has 

kW=(n-1) 
1 

N .-1,,-,(t)- l Nn- Jr) . 
X,-I -xi-. -XL -.x,-.+1 

(A.lO) 

Thus relatron may be compared with (IV.14) m the case of interpolation by cubic 
polynomials! 

We now take the definition (IV.16) and recursively calculate the integral 

with x0 < t G-X,,,. 

K,,(z, x0, t) := I:, dr’e-Z(fpr’) N,,(t) (A.1 1) 

Partial integration leads to 

With the help of (A.lO) one obtains the recurrence relation 

K,,(z,xo, I)=: N,,(t)-e-‘(‘--~o)N,,(xo) 

n-l - K 
-y, . . 1 -X*-II 

n- I,,- L(Z, x0, I) 

n-l 
+ K n- I.1 (z, x0, f) , 

Xl --y,-.+, I 
(A.12) 
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where m the trivial case (n = 1) we have 

K,,(Z, x0, t)=[’ dt’e -.-(l-f’) N,,(f) 
VI 

1 [,-z(r-~,)-,-z(r- r,-,) 1 (X1-I <th z = (A.13) 
0 (otherwise), 

with 2, :=min (x,, t). 
As in Section IV we find that the integrals 

translation of all knots and the variable t; i.e., 
K,, are invariant under a uniform 

s I = dt’e-“‘-“’ N,,,(C) = K,Jz, x0, t), (A.14) 
‘io 

where 

?=t+AT, I’=t’+AT, 

2, =x, + AT (i= 1 -n, . . . . m). 

flm, = normalized B-splines of order n based on the new set of knots (a,}. The proof 
of (A.14) is based on the fact that the normalized B-splines N,, do not depend on 
the chosen set of knots; i.e , 

#,J~)=ii(,,(f+ AT)=N,,(t), (A.15) 

provided that the new set of knots {.CI} results from the old one {x,} by the 
uniform translation given above. This is immediately evident from the recurrence 
relation (A.9). 

Let us return now to our concrete problem, i.e., the integral equation (IV. 1). We 
want to interpolate the function R,(q, x, t) with respect to the variable t in a given 
interval a = T < t < T + AT = b by a cubic B-spline (“cubic means that the degree of 
the spline is 3; i.e., we have a spline of order n = 4). The interpolation points f, are 
chosen in the form 

r,=T+(j-l)z (J = 1, . . . . m) (A.16) 
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and (for simplicity) we define the knots x, by 

(A.17) 

x m-4 = tm-2 

-Km-3 =x,-~ =x,-* =x, =T+AT=t,. 

In other words: with the exception of t2 and t, _ , all interpolation pomts comcide 
wtth a knot. This choice is just a practical one; many other defimtions are possible, 
too. 

We then put 

R,(q, xv t) = f c,(q, k) N+(f) 
,=I 
kf3 

= ,Tk c,(q, k) N+(f) (A.18) 

with x k ~, d t < xk, where the last equal sign follows from (A.8). 
With this ansatz and the definition (A.1 1) we go into the mtegral equation (IV. 1): 

kf3 

1 c,(q, xl N4,(f) = RbT’( 

J=k 

q, x, t) + f ‘i’ K,,(zE,, T, I) 

J= 1 

x j+c 4’qf2 j-‘: d.x’ o(q, q’, x, x’) c,( q’, 2) (A.19) 

(xk-, <t <xk). We now discretrze the integrals in q’ and x’ (as in (IV.7)) and 
obtain the system of linear equations: 

kf3 

1 c,aN,,(tx) -; ‘i3 KtJ(zEqx, T, tz) 1 V,,c,, = Rb:‘(ts) (A.20) 
,=k 

with x k-, <tr; <-xk 
Here we used the 

1 
J=I B 

(z = 1, . . . . m accordmg to (A.16)). 
abbreviations 

C JE = ‘J(q,V -‘d 

Rb;‘(fl;) = RbYq,, xx, f,c). 

According to (A.14) and (A.15) the integral kernel in (A.20) does not depend on 
the respective time interval [x,, x,] = [T, T+ AT] provided that all knots ZJ in the 
new interval have a fixed difference AT from the old ones (as in (A.14)). Thus the 
kernel has to be inverted just once in order to solve the system (A.20) with different 
right-hand sides Rbz)( tl;), i.e., in different time intervals. 
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